જો ${a_2},{a_3} \in R$ એવા છે કે જેથી $\left| {{a_2} - {a_3}} \right| = 6$ અને $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
1&{{a_3}}&{{a_2}}\\
1&{{a_3}}&{2{a_2} - x}\\
1&{2{a_3} - x}&{{a_2}}
\end{array}} \right|,x \in R.$ હોય તો $f(x)$ ની મહત્તમ કિમત મેળવો.
$36$
$24$
$12$
$9$
ઉકેલો $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
ધારોકે $f: R \rightarrow R$ એ કોઈ $m$ માટે વ્યાખ્યાયિત એવુ વિધેય છે કે જયાં $f(x)=\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x+m-2)\}$ અને $f$ નો વિસ્તાર $[0,2]$ છે. તો $m$ નું મૂલ્ય $.........$ છે.
ધારો કે $x$ એ $3$ ઘટકોવાળા ગણ $A$ થી $5$ ઘટકોવાળા ગણ $B$ પરના એક-એક વિધેયોની કુલ સંખ્યા દર્શાવે છે. અને $y$ એ ગણ $A$ થી ગણ $A \times B$ પરના એક-એક વિધેયોની કુલ સંખ્યા દર્શાવે છે. તો :
${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ નો પ્રદેશ મેળવો.
જો મહતમ પૃણાંક વિધેય હોય કે જેનો પ્રદેશ વાસ્તવિક સંખ્યા હોય તો તેનો વિસ્તાર મેળવો.